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We report an adjustable unbalanced quantum random-number generator based on the polarization of photons,
which can produce nondeterministic true random unbalanced numbers. The underlying physical process is
inherently quantum mechanical. To prove the quality of the output sequence of the proposed generator, we
test the obtained bias-free sequence through the 3-standard-deviation criteria and the National Institutes of
Standards and Technology test suite. Another type of nondeterministic unbalanced random-number generator
is also studied in this work, to evaluate the quality of the output biased random numbers.
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Unbalanced random numbers (URNs) are required in
some selection processes. URNs, compared with bal-
anced random numbers (BRNs), are those numbers
that bit “0” and “1” as occupying different proportions
in the overall data while keep the random property of
unpredictability at the same time. One recent applica-
tion of URNs is in quantum key distribution (QKD)!".
For instance in QKD based on biased decoy-state
BB84 protocol™® both quantum state preparation
and quantum state detection require URNs. The URNs
are used for randomly unbalanced or biased-selecting
basis choice [rectilinear basis (Z) and diagonal
basis (X)].

At present, researchers mainly use pseudo-URNs in
applications that require URNs. The pseudo-URNs are
produced by deterministic unbalanced random-number
generators (URNGs) based on the computational com-
plexity of the algorithms. This means that once given
the initial conditions of the algorithm, the sequence pro-
duced by such URNGs is determined. Thus it cannot meet
the randomness requirement of complete unpredictability.
On the other hand, nondeterministic URNGs based on
stochastic physical processes can produce true URNs
which can satisfy the security requirement mentioned pre-
viously. This kind of URNG can be further divided into
two types according to the scheme of generating URNs.
The first type is based on nondeterministic balanced
random-number generators (BRNGs). This type of nonde-
terministic URNG produce the required URNs through
transforming the BRNs generated from BRNGs with ap-
propriate algorithms. The second type of nondeterministic
URNG is those random-number generators (RNGs) that
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based on stochastic physical processes and can produce
URNSs directly without transfoming.

The first type of nondeterministic URNGs is proposed
since the technology of nondeterministic BRNGs gradu-
ally tends to be mature nowadays. In past decades, re-
searchers have brought up balanced physical RNGs based
on stochastic physical random processes such as radioac-
tive decay!”, thermal noise®, shot noise”, direction, arrival
time or polarization of a signal photon*"'?, phase noise
produced in a distributed feedback laser™”, the fluc-

tuation intensity of a chaotic semiconductor laser®®'”

and the recent semi-device independent approach!®'.
These BRNGs produce ultimate BRNs after proceeding
a randomness extraction process and can pass the stan-
dard statistical test suite for RNGs, for instance from
the National Institute of Standards and Technology
(NIST)™. Thus the URNs converted from these ultimate
output BRNs can be treated as a sequence obeying perfect
unbalanced “uniform” distribution. The main disadvant-
age of this type of unbalanced RNG is that in order to
keep the randomness of data, the algorithms used for
converting such BRNs are of low efficiency and cannot
continuously cover all possible probabilities.

To illustrate the low efficiency and discontinuous per-
formance of the this type of URNG, we introduce a con-
ventional transforming algorithm, a deformation of the
Von Neumann (VN) unbias algorithm that can transform
the BRNs into required URNs. The original VN unbias
algorithm can be used to transform an biased sequence
of BRNs into a shorter unbiased BRNs. After distorting,
this algorithm is suitable to meet the application of trans-
forming a sequence of BRNs into a shorter sequence of
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URNs with the required ratio between “1” and “0.” To
achieve this, we describe the deformation process as
follows.
1. We define the required probability of “1” as p; =
while the required probability of “0” as p, =

_a_

a+b
(a and b are integers irreducible to each other). Thus
the required ratio between “1” and “0” is a:b.

2. n is the minimum required combined bit to reach
the desirable unbalanced ratio. So n should meet
the condition of 2" > a + b > 271,

3. For the 2" kinds of compound modes of binary bits,
when the specific predetermined compound modes
turn up, we record “1.” Other b types of specific pre-
determined compound modes are recorded as “0,”
while the residual compound modes are discarded.

We analyze the efficiency of the algorithm in Fig. 1.
After the distortional VN algorithm, the raw sequence
is compressed at a proportion of (a -+ b)/(n - 2"). The
compression coefficient (y), i.e., the efficiency of extracting
URNS from raw series of BRNs, depends on the accuracy
of the specific required probability, as shown in Fig. 1.
From Fig. 1 we can see this algorithm is of low
efficiency and cannot continuously cover all the possible
probabilities.

In this Letter, we proposed an adjustable unbalanced
quantum random number generator (UQRNG) of the sec-
ond type. Quantum random number generators (QRNGs)
are those nondeterministic RNGs that rely on fundamen-
tal quantum principles. The proposed UQRNG is based on
the quantum superposition principle that the quantum
state of photon collapses to a certain direction at a certain
probability. The advantage of the proposed QRNG is that

o 1-bit
O 2-bit
08 L O 3-bit ||
+  4-bit
+ 5-bit
0.6 - + 6-bit |
' + 7-bit
> o
0.4+ ° f
o
o
o +
02} © f ]
& ﬁ M
r
W’H*HHMF
0 L L L L
0 20 40 60 80 100

a+b

Fig. 1. Efficiency of extracting bits from raw unbiased random
sequence. a + b represents for a group of required probability.
For each probability with parameter a + b, the corresponding
discrete points in this figure represents the minimum combined
bit (n) it requires. When more combined bits are required, the
efficiency of the algorithm will be lower.

it can produce URNs much intuitively with high efficiency
and can continuously cover all required probabilities. The
experimental demonstration of the proposed UQRNG is
shown in Fig. 2. The system is composed of a laser diode
(LD) emitting at 1550 nm, an attenuator (ATT), an elec-
tric polarization controller (EPC), a polarizing beam split-
ter (PBS), two single-photon detectors (SPDs; i.e., SPD1
and SPD2), and a data acquisition card which is con-
nected to a computer. To generate binary random num-
bers (RNs), we record the bit as logical 1 if SPDI1
detects a photon or logical 0 if SPD2 detects a photon.
The SPDs are InGaAs avalanche photodiodes produced
by ID-Quantique. There are four output levels of the volt-
ages going to the EPC, with each voltage corresponding to
4z retardance. This means the EPC can produce arbitrary
polarization state. Besides, the system can also produce
the desired accumulated statistics. Therefore the scheme
allows a continuous tuning of the ratio.

The proposed system also employs a circuit feedback
system with a polarization control algorithm in the exper-
imental setup. The polarization control algorithm is a gra-
dient algorithm. The input of the algorithm is the ratio
between the statistical detect events of SPD1 and
SPD2 in 1 s. According to the ratio, the control algorithm
will adjust the EPC to achieve the ratio desired. The EPC
performs a live verification of the ratio between counts of
SPD1 and SPD2 every 5 min. This ratio is the result of the
joint action of PBS and different detection efficiencies of
two detectors. The EPC checks whether this joint action is
rigorously working at the required value through a feed-
back of the ratio of the output stream statistics of SPD1
and SPD2. If the proportion of “1” is within 1% error from
the desired proportion, the bit stream is accepted. Other-
wise, the EPC adjusts the photon polarization state to
make the ratio achieve the required value and the bit
stream obtained within this period of time is abandoned.

In this work, we apply a light source with repetition
frequency of 1 MHz. The light source is attenuated to
0.1 photon/pulse and the detection efficiency of the two
SPDs is 10%. Thus, the URNs can be generated at a rate
of magnitude 10* bit/s through adjusting the EPC
in Fig. 2.

The next step is estimating the randomness of the out-
put URNSs produced by this system. A sequence of BRNs is
random if it obeys perfect uniform distribution, as it
means completely unpredictable. Similarly to this, the
randomness of URN sequence is judged by whether
it obeys perfect unbalanced “uniform” distribution.
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Fig. 2. Experimental setup.

021405-2



COL 13(2), 021405(2015)

CHINESE OPTICS LETTERS

February 10, 2015

Furthermore, the distribution of a sequence can be dis-
played by the min-entropy of the sequence® ??. When
viewed from original causes, there are two kinds of factors
that weaken the randomness of the output sequence (the
bias between the obtained random sequence and desirable
random sequence, and the correlations between adjacent
bits in the obtained random sequence).

The bias means the ratio between bit “1” and “0” of the
obtained random sequence is not exactly what we desired.
In this work, since the EPC is adjusted to set the mark
ratio to the required ratio through a feedback of the ratio
of the output stream statistics of SPD1 and SPD2, the ac-
curacy of the required probability of “0” and “1” can reach
high precision. On the other hand, the correlations be-
tween adjacent bits are caused by the after pulses of
the SPDs. This means if a click occurs in one detector,
it is more likely to be followed by a click in this detector
again than the other, which constitutes a correlation.

Due to the difference of test standards, the randomness
of the output RNs is discussed dividing it into two catego-
ries (BRNs and URNS).

For the BRNs (p;:py = 1:1) generated from this work,
quantitative demonstration can be given through calculat-
ing the bias |e[N]| of the random bit stream®. |e[N]| is
defined as

e[ V]| = [(X:) — 1/2], (1)

where () represents the statistically evaluated propor-
tion of “1” in the random bit stream.

The autocorrelation coefficient R[k] of a sequence X is
defined as

RIK] = i ,“)(QXH—k ) : (2)

where EJ[ -] represents the expected value operator, k is
the delay bits, and ¢ and ¢ are the mean and standard
deviation of X. Figure 3(a) shows calculated |e[N]| versus
different N from 1 to 16 Mbits, while Fig. 3(b) shows R[]
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versus k for X with N = 16 Mbits. When the ¢[N] and
R[k] keep below their own 3-standard-deviations written
as 30, and 30,, the evaluated random bit sequence can
be considered to be statistically unbiased and indepen-
dent®. Tt can be clearly conformed from Fig. 3 that the
generated BRN sequence obeys these 3-standard-
deviation criteria.

The NIST test suite can better qualify the statistical
randomness of the generated BRNs of our generator.
The typical test result of 1 Gb BRNs is shown in Table 1.
Obviously, the output BRNs of the system can pass the
NIST tests.

For the URNs (for instance p;:py = 3:1) generated from
the proposed generator, as we set forth previously, the out-
put URN sequence can be treated as the accurate URN
sequence of required ratio, owing to the use of the feedback
system. Therefore we just need to take the correlations
into account when considering the factors affecting ran-
domness. Figure 4(a) show the autocorrelations between
the generated URNs (p;:py = 3:1) within 100 bit delays,
while Fig. 4(b) shows the autocorrelations between the
URNs converted from BRNs of a commercial RNG;
Quantis® produced by ID-Quantique. The data size is
1 x 107 bits.

From Fig. 4 and several other groups of generated data
with different ratios between “0” and “1,” we can see that
the raw data produced by our system exhibits a very slight
lager correlation than that of the random data generated
or converted from Quantis. This correlation can be
reduced through using Si avalanche photodiodes as the
SPDs instead of InGaAs avalanche photodiodes, since
the afterpulses of Si avalanche photodiodes are much
lower than InGaAs avalanche photodiodes.

Finally, the min-entropy evaluation procedure is pro-
ceed to estimate the randomness of output bit strings of
the proposed UQRNG™. Min-entropy is defined as

H (X) = —logQ(xér{l(%ic}nPr[X = x]) (3)
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Fig. 3. (a) Bias |¢[N]| versus the sample size of the generated bRN sequence; red line is its 3-standard-deviation line, 36, = (3N~1/2) /2,
where N = 1,2, 3, ..., 16 Mbits; (b) autocorrelation coefficient R[k] as a function of the delay bit k for a 16 x 10° output URN stream;
red line is its corresponding 3-standard-deviation line, 36, = 3N~/2, where N = 16 Mbits.
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Table 1. Typical Result of NIST Statistical Tests

Statistical Test p-Value Proportion Result”

Frequency 0.476911  0.9920  Success
Block frequency 0.123755  0.9890  Success
Cumulative sums 0.382115  0.9900  Success
Runs 0.348869 0.9860  Success
Longest run 0.670396  0.9940  Success
Rank 0.816537 0.9820  Success
Spectral 0.078086  0.9870  Success
Nonoverlapping template  0.071310  0.9930  Success
Overlapping template 0.751572  0.9849  Success
Universal 0.138860  0.9930  Success
Approximate entropy 0.610070  0.9920  Success
Random excursions 0.483876  0.9922  Success
Random excursions variant 0.164773  0.9906  Success
Serial 0.363593  0.9930  Success
Linear complexity 0.088226  0.9850  Success

“Using 1 Gb BRNs produced by the UQRNG and the significance level
a = 0.01, the p-value should be larger than 0.01 and the proportion
should be above 0.98 for success.

Equation (3) quantifies the randomness of a distribution
X on {0,1}". Pr[X=u1] is the detection event
probability of a n bit variable z in the in raw sequence.
We demonstrate a method that can roughly estimate
the min-entropy of random data. The process is described
as follows.

1. Considering a combined size of n bits, there are 2"
kinds of compound modes.

2. We count the number of occurrences of each com-
pound mode in the output random sequence, and find
the maximum value of the occurrences. Afterwards we
calculate the maximum probability

10
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P = max Pr[X =u].
2e{0,1}"

3. The min-entropy of n bit combination is calculated
using Eq. (3).

4. Finally, for each kind of n-bit combination, Steps 1-3
are executed in sequence to generate the correspond-
ing min-entropy.

Through applying the min-entropy evaluation method
mentioned previously, we respectively calculate the min-
entropy of the output sequence generated from our system
with ratios p;:pg = 1:1 and p;:py = 3:1. The fitting curve
is shown in the left-hand side of Fig. 5(a). The right-hand
side of Fig. 5(a) shows the fitting curve of the min-entropy
between the BRNs and URNs (p;:py = 3:1) generated or
converted from the BRNs of Quantis.

We assume the fitted curve of min-entropy is
y = kz + b. The parameter is shown in Fig. 5(b). From
Fig. 5(b), the min-entropy per bit (represented by param-
eter k) of the proposed adjustable UQRNG deviate from
the min-entropy per bit of URNs converted from Quantis
in a tiny degree. This min-entropy per bit will further
rise and thus decrease the deviation after weakening the
correlation in the output strings through the methods ex-
hibited previously. Thus the URNs generated from our
adjustable UQRNG can be regarded as sequence approx-
imately obeying a perfect unbalanced “uniform” distribu-
tion. Therefore the proposed adjustable UQRNG can
satisfy the randomness requirement.

In conclusion, we demonstrated an experimental adjust-
able UQRNG which can generate accurate URNs of
required proportion. The output BRNs can pass the
3-standard-deviation criteria and the NIST test suite.
The proposed adjustable UQRNG overcomes the short-
comings of the first type of URNG based on BRNG, while
producing true random URNs with approximately equal
quality compared with that generated from the competing
type of URNG. The generation rate of the proposed
UQRNG can be increased by applying a light source of
higher repetition frequency (1 GHz for example) or
adjusting the attenuator to enhance the average photon
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Auto—correlation
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Fig. 4. (a) Autocorrelation of uRNs (p;:py = 3:1) generated from our adjustable UQRNG. Average value within 100 bit delay is
2.96 x 1074; (b) autocorrelation of URNs (p;:p; = 3:1) converted from BRNs generated by Quantis. Average value within

100 bit delay is —1.56 x 1074
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(b) The parameter of the fitted curve.

Fig. 5. Min-entropy evaluation.

numbers. However, at present the advanced commercial
SPD has a maximum count rate of 100 MHz, which limits
the final generation rate of the system. The Letter shows a
proof of the proposed scheme. Research on other schemes
to construct UQRNGs with a higher generation rate will
be an emphasis of our work in the future. Another prom-
ising research direction in the future is searching for a
method that can test the randomness of unbalanced
random sequences.
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